skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gao, Qingyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Asymmetry in the interaction between an individual and its environment is generally considered essential for the directional properties of active matter, but can directional locomotions and their transitions be generated only from intrinsic chemical dynamics and its modulation? Here, we examine this question by simulating the locomotion of a bioinspired active gel in a homogeneous environment. We find that autonomous directional locomotion emerges in the absence of asymmetric interaction with the environment and that a transition between modes of gel locomotion can be induced by adjusting the spatially uniform intensity of illumination or certain kinetic and mechanical system parameters. The internal wave dynamics and its structural modulation act as the impetus for signal-driven active locomotion in a manner similar to the way in which an animal’s locomotion is generated via driving by nerve pulses. Our results may have implications for the development of soft robots and biomimetic materials. 
    more » « less
  3. null (Ed.)
  4. Abstract Abrupt (i. e. step) environmental changes, such as natural disasters or the intervention of predators, can alter the internal dynamics of groups with active units, leading to the rapid destruction and/or restructuring of the group, with the emergence of new collective structures that endow the system with adaptability. Few studies, to date, have considered the influence of abrupt environmental changes on emergent behavior. Here, we use a model of active matter, the Belousov‐Zhabotinsky (BZ) self‐oscillating gel, to study the mechanism of formation and transition between modes of collective locomotion caused by changes of illumination intensity in arrays of interacting photosensitive active units. New forms of collective motion can be generated by step changes of illumination intensity. These transformations arise from the phase resetting and wave‐signal regeneration induced by the abrupt parameter variation, while gradual change results in different evolution of collective motion. Our results not only suggest a novel mechanism for emergence, but also imply that new collective behaviors could be accessible via discontinuous parameter changes. 
    more » « less
  5. Abstract Many drugs adjust and/or control the spatiotemporal dynamics of periodic processes such as heartbeat, neuronal signaling and metabolism, often by interacting with proteins or oligopeptides. Here we use a quasi‐biocompatible, non‐equilibrium pH oscillatory system as a biomimetic biological clock to study the effect of pH‐responsive peptides on rhythm dynamics. The added peptides generate feedback that can lengthen or shorten the oscillatory period during which the peptides alternate between random coil and coiled‐coil conformations. This modulation of a chemical clock supports the notion that short peptide reagents may have utility as drugs to regulate human body clocks. 
    more » « less